Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene

Two-dimensional (2D) graphene emerged as an outstanding material for plasmonic and photonic applications due to its charge-density tunability, high electron mobility, optical transparency and mechanical flexibility. Recently, novel fabrication processes have realised a three-dimensional (3D) nanoporous configuration of high-quality monolayer graphene which provides a third dimension to this mat...

متن کامل

Damping pathways of mid-infrared plasmons in graphene nanostructures

Plasmon is the quantum of the collective oscillation of electrons. How plasmon loses its energy (or damping) plays a pivotal role in plasmonic science and technology. Graphene plasmon is of particular interest, partly because of its potentially low damping rate. However, to date, damping pathways have not been clearly unravelled experimentally. Here, we demonstrate mid-infrared (4–15 mm) plasmo...

متن کامل

Terahertz and mid-infrared reflectance of epitaxial graphene

Graphene has emerged as a promising material for infrared (IR) photodetectors and plasmonics. In this context, wafer scale epitaxial graphene on SiC is of great interest in a variety of applications in optics and nanoelectronics. Here we present IR reflectance spectroscopy of graphene grown epitaxially on the C-face of 6H-SiC over a broad optical range, from terahertz (THz) to mid-infrared (MIR...

متن کامل

Infrared Topological Plasmons in Graphene.

We propose a two-dimensional plasmonic platform-periodically patterned monolayer graphene-which hosts topological one-way edge states operable up to infrared frequencies. We classify the band topology of this plasmonic system under time-reversal-symmetry breaking induced by a static magnetic field. At finite doping, the system supports topologically nontrivial band gaps with mid-gap frequencies...

متن کامل

Graphene plasmonics for terahertz to mid-infrared applications.

In recent years, we have seen a rapid progress in the field of graphene plasmonics, motivated by graphene's unique electrical and optical properties, tunability, long-lived collective excitation and its extreme light confinement. Here, we review the basic properties of graphene plasmons: their energy dispersion, localization and propagation, plasmon-phonon hybridization, lifetimes and damping p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nature Communications

سال: 2017

ISSN: 2041-1723

DOI: 10.1038/ncomms14885